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Abstract

From a crushing defeat in a high school math contest, I
learned how a number is like a transformation of points
in the complex plane, and came to appreciate what’s
probably the coolest equation in analysis, “Euler’s for-
mula”:

e
iφ = cos φ+ i sinφ

This paper recounts what I learned on my way there,
and should be within the reach of an advanced high
school student.

This isn’t a real mathematical paper. Terminology
isn’t precise.

If you understand the addition formulas for sin x and
cos x you’ll understand most of my math; if you’re also
familiar with the Taylor series (the Maclaurin series in
particular), all of this paper is within your grasp.

The Contest Problem

This was the final problem from a high school math
contest in the 1970s:

Find two distinct numbers, not 0 or 1, such
that each is the square of the other.

In other words, find two numbers x and y such that:

x = y
2 (1)

y = x
2 (2)

x, y 6∈ {0, 1} (3)

Solution. Once you see it, the answer is simplicity
itself. The key is not to assume, as I did that day, that
x, y ∈ R; they’re complex numbers.

Substitute (2) into (1) to yield x = x4 or more canon-
ically:

x
4 − x = 0 (4)

Factoring yields
x(x3 − 1) = 0

and
x(x− 1)(x2 + x+ 1) = 0 (5)

If any factor of (5)—i.e. x or (x− 1) or (x2 +x+1)—is
0, then (4) is satisfied. But (3) means that only the
third factor can be 0, i.e., that the solution must be a
root of

x
2 + x+ 1 = 0

which we solve using the quadratic formula

x =
−b±

√
b2 − 4ac

2a

Since a = b = c = 1, the solutions are

x =
−1±

√
−3

2

or, writing i for the positive square root of −1:

x ∈
{

−1 + i
√
3

2
,
−1− i

√
3

2

}

And y is whichever one x isn’t.

Checking it. Let’s consider the solution x = −1+i
√
3

2
,

y = −1−i
√

3

2
. Does x2 truly equal y?

x
2 =

1− 2i
√
3− 3

4
=

−1− i
√
3

2
= y

Yes. Likewise, we can see that y2 = x:

y
2 =

1 + 2i
√
3− 3

4
=

−1− i
√
3

2
= x

And x3 = x2x which is
(

−1 + i
√
3

2

)(

−1− i
√
3

2

)

=
(−1)2 − (i

√
3)2

4

=
1 + 3

4
= 1

1



And there we have it: the solutions are cube roots of 1.
Let’s draw them:
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If we write them as ordered pairs corresponding to rect-
angular coordinates for points in the complex plane—
i.e. (a, b) for a+ bi—we’ll have a list like this:

• (1, 0)

• (− 1

2
,
√
3

2
)

• (− 1

2
,−

√
3

2
)

We can write the polar coordinates for these points in
the form (r, θ), where

a = r cos θ, b = r sin θ (0 ≤ θ < 2π)1

• (1, 0)

• (1, 2π
3
)

• (1, 4π
3
)

That these are cube roots of 1 is easier to see in the
second list. Indeed, the points lie on the unit circle,
equidistant from each other.

This led me to an astonishing discovery. Probably I
found it in a book, but I don’t think a big deal was ever
made of it.

1Intuitively, θ is the angle between the X-axis, and a vector
from (0, 0) passing through the point in question. For (1, 0),

θ = 0; for (− 1

2
,
√

3

2
), θ = 2π/3.

Multiplying the numbers is like adding

the angles

If we multiply two complex numbers with polar coordi-
nates (r, θ) and (s, φ), their product has polar coordi-
nates (r ·s, θ+φ). That is, you multiply the magnitudes
but add the angles.

Informal proof. Translate (r, θ) and (s, φ) into rect-
angular coordinates:

(a, b) = (r cos θ, r sin θ) (6)

(c, d) = (s cos φ, s sinφ) (7)

Since

(a+ bi) · (c+ di) = ac− bd+ (ad+ bc)i

the product’s rectangular coordinates will be

(ac− bd, ad+ bc) (8)

Our task is to demonstrate that the point with rectan-
gular coordinates (8) has the polar coordinates

(r · s, θ + φ) (9)

that is, to show

ac− bd = r · s · cos(θ + φ) (10)

ad+ bc = r · s · sin(θ + φ) (11)

This isn’t very hard. Recall the addition formulas

cos(α+ β) = cosα cosβ − sinα sin β (12)

sin(α+ β) = sinα cos β + sin β cosα (13)

Substitute (6) and (7) into the left-hand side of (10)
and factor:

ac− bd = r cos θ · s cosφ− r sin θ · s sinφ
= r · s · (cos θ cos φ− sin θ sinφ) (14)

= r · s · cos(θ + φ) (15)

(Substitute (12) into (14) to derive (15).)
Similarly expanding (11), rearranging terms and sub-

stituting (13) yields:

ad+ bc = bc+ da

= r sin θ · s cosφ+ s sinφ · r cos θ
= r · s · (sin θ · cos φ+ sinφ · cos θ)
= r · s · sin(θ + φ) (16)
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which is what we set out to prove.

Now it is possible that θ + φ ≥ 2π though both are
in in the interval [0, 2π); if that happens, (15) and (16)
will still be true if we use (θ + φ− 2π) as the angle.

Geometrically, multiplying an arbitrary complex
number by (r, θ) is like magnifying (or minifying) its
vector by r, and rotating it by θ.

Complex numbers as matrices

The combinations above bear an interesting similarity
to matrix multiplication. Basically we can consider a
complex number a+ bi to be isomorphic with a matrix

[

a −b

b a

]

Then

(a+ bi) · (c+ di) =

[

a −b

b a

]

·
[

c −d

d c

]

=

[

ac− bd −ad− bc

bc+ ad −bd+ ac

]

=

[

ac− bd −(ad+ bc)
ad+ bc ac− bd

]

= (ac− bd) + (ad+ bc)i (17)

From this we can see that a complex number whose
polar coordinates are (1, θ) can be represented by the
“rotation matrix”:2

[

cos θ − sin θ
sin θ cosθ

]

The Wikipedia article2 shows how the rotation matrix
can effectively rotate a point in the xy-plane as follows:

[

cos θ − sin θ
sin θ cosθ

] [

x

y

]

=

[

x cos θ − y sin θ
x sin θ + y cos θ

]

(18)

Note that in (18) we wrote the rotation matrix as a 2×2
matrix but the point (x, y) as a column vector. We can
represent both the rotation matrix and the (x, y) point
as complex numbers if we wish; rotation would then be
isomorphic with complex multiplcation.

2https://en.wikipedia.org/wiki/Rotation matrix downloaded
2015-02-25

[

cos θ − sin θ
sin θ cosθ

]

·
[

x −y

y x

]

=

[

x cos θ − y sin θ −y cos θ − x sin θ
x sin θ + y cos θ −y sin θ + x cos θ

]

=

[

x cos θ − y sin θ −(x sin θ + y cos θ)
x sin θ + y cos θ x cos θ − y sin θ

]

which is an exact match for (18), modulo the represen-
tation of a complex number as a 2× 2 matrix.

In this case, the multiplication is commutative; the
multiplication of a 2×2 matrix by a 2×1 column vector
cannot be.

Euler’s formula

We can also see that adding the angles is like multi-
plying the numbers if we rewrite the Maclaurin series3

expansions of sin x and cos x and rearrange terms care-
fully.

Readers not familiar with the Maclaurin series (or the
Taylor series) can nevertheless appreciate this section by
taking on faith that sin x and cos x and ex are in fact
representable by the expansions offered here.4

First, sin x is expanded thus:

sin x =
x1

1!
− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
· · ·

=
∞
∑

n=0

(−1)n · x2n+1

(2n+ 1)!
(19)

Since −1 = i2, we can rewrite (19) as:

sin x =

∞
∑

n=0

i2n · x2n+1

(2n+ 1)!

so that

i sin x =
∞
∑

n=0

(ix)2n+1

(2n+ 1)!
(20)

3http://mathworld.wolfram.com/MaclaurinSeries.html
downloaded 2015-02-25

4The arguments for both sin and cos are in radians; one ra-
dian is the angle subtended by a circular arc whose length is
equal to the radius. Thus a 90◦-angle is π/2 radians, a 60◦-angle
is π/3 radians, and a full circle (360◦) is 2π radians.
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Why i sin x? We’ll see in a minute. Similarly, we rewrite
the Maclaurin series for cosx

cosx =
x0

0!
− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
· · ·

=
∞
∑

n=0

(−1)n · x2n

(2n)!

=
∞
∑

n=0

(ix)2n

(2n)!
(21)

The Maclaurin series expansion for ex is:

e
x =

x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

=
∞
∑

i=0

xi

i!
(22)

Now we’re ready to combine (20) and (21) and rearrange
terms:

cosx+ i sin x =

∞
∑

m=0

(ix)m

m!
(23)

= e
ix (24)

We substitute (22) into (23) to arrive at (24), which is
known as “Euler’s formula.” More information on this
formula is on Wikipedia5 and Wolfram MathWorld6.

The wikipedia article quotes Feynman as calling the
equation “the most remarkable formula in mathemat-
ics.” I can’t disagree.

Logarithms.

In a complex number with polar coordinates (r, θ), what
we’re saying is that θ acts rather like a logarithm: the
product of the complex numbers has an angle that’s the
sum of the angles of each factor. And the reason that’s
so is precisely because the angle is part of the number’s
algorithm: the “imaginary” part.

Thus, if a complex number has polar coordinates
(r, θ), we can define ζ = ln r, provided that r > 0.
Then the complex number’s value is equal to

e
ζ+iθ (25)

Put diffrently, we can say that ζ + iθ is its logarithm
(base e).

5https://en.wikipedia.org/wiki/Euler%27s formula down-
loaded 2015-02-23

6http://mathworld.wolfram.com/EulerFormula.html down-
loaded 2015-02-23

Are not unique. You may recall that sin and cos are
periodic functions, that in particular

sin(x+ 2πn) = sin x

and
cos(x+ 2πn) = cos x

for all integers n.
It follows therefore that the complex numbers repre-

sented by (r, θ+2πn) for various values of n are in fact
one and the same number; this means that whenever we
refer to “the” logarithm of a complex number, we may
as well say “±2πin for integer n.”

The logarithm, therefore, isn’t unique in C. I believe
this is usually solved by restricting θ as for example

θ ∈ [0, 2π)

Conclusion

A real scientific or mathematical paper would have some
profound conclusions here, but this is just my recount-
ing of some great fun I had with math in high school.
It’s because of things like this that I studied math in
college, and the reason I consider mathematics to be a
fine art.
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