
Fibonacci Numbers and Exponents:

A Surprising Result

Collin Park

April 16, 2015

Abstract

I used to interview a lot of candidates for software-
engineering positions. For a quarter-century or so, I
asked them to write a program (a function or subroutine
actually) to calculate the nth “Fibonacci number.”1

It’s easy to write a short routine that’s surprisingly
slow (exponential in n actually); it’s almost as easy to
write one that’s linear in n. And many candidates were
surprised that, given f0 and f1, it doesn’t take much
room to simply store all values of fn that fit into a 32-
bit int.

But one day, after asking the same programming
question for 20 years, I saw an algorithm that could
compute fn in O(log n) time—on that day, it was my
turn to be surprised.

How I presented the problem

Basically, I’d ask candidates to write an “integer”2 func-
tion of an “integer” parameter, that would compute this
mathematical function:

f(n) =



















−1 if n < 0,

0 if n = 0,

1 if n = 1,

f(n− 1) + f(n− 2) if n ≥ 2

I would then ask them to describe how they’d ap-
proach the problem, and write something on paper or
a whiteboard, using any programming language I could
read.

1The nth Fibonacci number is the sum of the (n-1)st and
(n-2)nd Fibonacci numbers; if we denote the nth by fn, then
fn = fn−1 + fn−2. The starting point is arbitrary, but I’ve
typically seen f0 = 0, f1 = 1.

2I put quotes around “integer” here because most program-
ming languages use 32- or 64-bit quantities, rather than actual
integers. That is, we compute with a subset of the integers,
typically (−231, 231 − 1).

A very slow solution

Candidates usually spoke intelligently about handling
the various cases. When they started writing, they typ-
ically wrote a recursive routine embodying this:

if n < 0 then

return −1;
else if n = 0 then

return 0;
else if n = 1 then

return 1;
else

return f(n− 1) + f(n− 2);

Algorithm 1: nth Fibonacci number, recursively

In actual code it would look like Example 1. (Note:
This code was actually run on Python 2.7.6; the exam-
ple also includes a small verification program.)

def f(n):

"nth Fibonacci number recursively"

if n < 0:

return -1

elif n < 2:

return n

else:

return f(n-1) + f(n-2)

for k in range(40):

print k, f(k)

Example 1: Recursive realization (Python 2) of f(n)

The recursive routine is slow because every time n in-
creases by 2, the execution time roughly doubles. Here’s
what I mean:

1



• To compute f(k+2), it computes f(k+1) and f(k);
to compute f(k+1), it computes f(k) and f(k−1).

• Thus, to compute f(k+2), it computes f(k) twice,
besides computing f(k − 1); it therefore takes at
least 2 times as long as computing f(k).

• Therefore, computing f(k + 2m) takes at least 2m

times as long as computing f(k). This might not
seem like a big deal, but consider that computing
f(k+40) takes over a million times as long as com-
puting f(k).

You can see this, even on a modern3 processor, by run-
ning the Python program in Example 1; the first 25
entries appear almost instantly, but things get visibly
slow after that.

Iterating in n

Programmers are unpleasantly surprised to find they’ve
written such a slow routine, and I would typically guide
them toward a solution replicating the computations
they would do by hand. Basically one would jot down
0 and 1, then another 1 (since 0 + 1 = 1), then 2 (i.e.,
1+1), then 3 (1+2), then 5 (2+3), etc. In other words,
you’d track the two previous values, and add them to
get the next, something like Algorithm 2.

Now allow me to explain something about the loop.
The first time through, k = 2; we run it with k = 3,
k = 4, etc., up to and including k = n.

Each time we enter the loop, back1=f(k − 1) and
back2=f(k − 2); this is true the first time through
(where k = 2), and each time through we do the compu-
tation to keep it true. This is called the loop invariant.

At the bottom of the loop, we have runningTotal =
f(k), and in particular when we exit the loop (i.e., when
k = n), we have runningTotal = f(n), which is what
we wanted.

The principle of finding the loop invariant is a power-
ful one in writing loops correctly. If each pass through
the loop preserves the invariant, and if the loop is guar-
anteed to terminate, then the invariant will still be true
upon exit. I don’t always remember to figure out the
invariant, but when I do, the code is more likely to be
correct; if I add a comment, it’s also easier to maintain.

3e.g., 2.3 GHz Intel Core i7

if n < 0 then

return −1;
else if n = 0 then

return 0;
else if n = 1 then

return 1;
else

runningTotal← 1;
back2← 0;
back1← 1;
for k ← 2 to n do

/* Compute runningTotal← f(k). */

/* On entry back1 = f(k − 1) */

/* and back2 = f(k − 2) */

runningTotal← back2 + back1;
back2← back1;
back1← runningtotal;

return runningTotal;

Algorithm 2: Iterative realization of f(n)

Precomputing?

Now, what if you need f(n) in approximately constant
time? Could you just compute all reasonable values of
f(n) ahead of time and just look them up in a table?

Most programmers react with at least mild surprise
when I suggest this. They might ask if it’s worth all
that space. “How much space would it take?” I’d ask.
If that puzzled them I’d say, “Let’s suppose f(n) grew
about as fast as 2n, how much space would we need?”

About as many entries as there are bits in the com-
puter language’s int type. If f(n) doubles every time
you bump n by 1, then around f(32) you’d be beyond
the range of a 32-bit int; you’d thus need only about
32 entries in a table of precomputed values.

Then I’d ask, “What if it grew about as fast as 2n/2?”

Usually they could see that it would be about twice
the number of bits; that is, if f(n) doubles every time
you bump n by 2, then we’d need no more than about
64 entries.

And the Fibonacci numbers do grow at least that fast.
Since f(n) = f(n− 2)+ f(n− 1), and f(n− 1) = f(n−
2)+f(n−3), we can see that f(n) = 2f(n−2)+f(n−3);
that is f(n) ≥ 2f(n− 2).

2



The new solution

One day at work, maybe 10 years ago, I mentioned this
programming problem. One of our senior people4 sent
me an algorithm I’d never seen before; it resembled Ex-
ample 2. I had no idea how it could possibly work.

def f(n):

if n < 0:

return -1

elif n < 2:

return n

else:

a = 0

b = c = 1

x = 0

y = 1

while n:

if n & 1:

t = a*x + b*y

y = b*x + c*y

x = t

t = a*b + b*c

a = a*a + b*b

c = b*b + c*c

b = t

n = n >> 1

return x

for k in range(40):

print k, f(k)

Example 2: O(log n) realization of f(n)

I ran his code and indeed it did work. But I still had
no idea why.

I emailed him (it was a Saturday I think) and his
reply overestimated my intelligence. Or sophistication.
Probably both. Fortunately a web search helped me
find an explanation I could actually understand.

The code relies on two big ideas. The first one is the
observation that

[

0 1
1 1

] [

fn
fn+1

]

=

[

fn+1

fn+2

]

which can be applied recursively:
[

0 1
1 1

] [

0 1
1 1

] [

fn
fn+1

]

=

[

fn+2

fn+3

]

4Blake Lewis

and so on; indeed

[

0 1
1 1

]n [

0
1

]

=

[

fn
fn+1

]

(1)

The function definition from Example 2 is expressed
more meaningfully in Algorithm 3.

/* What Example 2 means */

1 if n < 0 then

2 return −1;
3 else if n = 0 then

4 return 0;
5 else if n = 1 then

6 return 1;
7 else

8

[

a b
b c

]

←

[

0 1
1 1

]

; /* a = 0; b = c = 1 */

9

[

x
y

]

←

[

0
1

]

; /* x = 0; y = 1 */

10

[

x
y

]

←

[

a b
b c

]n [

x
y

]

; /* while n:... */

11 return x;

Algorithm 3: Interpretation of Example 2

Note that line 10 expresses the entire “while n:”
loop from Example 2; this is the second big idea.

This idea is that you can raise something to the nth
power using O(log n) multiplications, by successively
shifting n right 1 bit and squaring a temporary vari-
able.

Let’s consider calculating xn in general. I mean, sup-
pose you wanted to calculate 38; how would you do it?

You might just do 7 multiplications, which would be
easy enough:

3 · 3 = 9
9 · 3 = 27
27 · 3 = 81
81 · 3 = 243
243 · 3 = 729
729 · 3 = 2187
2187 · 3 = 6561

But suppose we wanted π8; far more efficient to calcu-

late π22
2

. That is, to do 3 multiplications rather than
7 as shown in Algorithm 4.

We can generalize this for values of n that aren’t pow-
ers of 2, something like Algorithm 5.

3



set p← π · π;
set p← p · p;
return p · p;

Algorithm 4: π8 in just 3 multiplications

/* Set X ← AnX */

1 while n > 0 do

2 if n is odd then

3 X ← A ·X ;

4 n← ⌊n/2⌋;
/* if n = 0 then break; */

5 A← A2;

Algorithm 5: O(log n) realization of AnX

The loop invariant for Algorithm 5 is that our desired
result for X is always An ·X. It’s true on entry to the
loop, and it’s true after line 5.

Each pass through the loop, we modify n and A, and
maybe X; the loop must terminate since n has only a
finite number of bits. When n = 0 we’ll end the loop.

Let’s run through it with X = 2, A = 3 and n = 5;
we’ll calculate 2 · 35 = 486.

• The first time we enter the loop, we have X = 2,
A = 3, n = 5.

Trivially, our desired value is AnX. Here n is odd,
so we set X ← X · A; now X = 6. We then set
n← 2 and A← 32 = 9.

Note that our desired value is still AnX, because
the calculations we’ve done compensate for each
other: n is smaller but since A has been squared,
we have 92. Also, X was multiplied by A’s previ-
ous value; this makes up for the fact that when we
divided n by 2 in line 4 we discarded its low-order
bit.

• We enter again with X = 6, A = 9, n = 2.

Since n is even we skip line 3, so we leave X = 6.
We set n← 1 and A← 92 = 81

Our desired value is still AnX.

• We enter the third time with X = 6, A = 81, n = 1.

Since n is odd we set X ← X · A = 486 (line 3).
When we shift n right one bit (line 4, it becomes
zero.

At this point, X has reached our desired value.
With n = 0 we again have trivially that our de-
sired value is AnX.

Computing A2 where A is a 2× 2 matrix

Actually we’re going to talk about the case where A is a
particular kind of 2×2 matrix viz., a matrix expressible
as

[

a b
b c

]

(2)

Recalling that matrix multiplication is row-by-
column, we can see that

[

a b
b c

]2

=

[

a2 + b2 ab+ bc
ab+ bc b2 + c2

]

(3)

Now, let’s use (3) to show how Algorithm 5 applies
to a 2× 2 matrix A and a 2× 1 vector X. The result is
Algorithm 6.

/* Set

[

x
y

]

←

[

a b
b c

]n [

x
y

]

*/

1 while n > 0 do

2 if n is odd then

3

[

x
y

]

←

[

ax+ by
bx+ cy

]

4 n← ⌊n/2⌋;
/* if n = 0 then break; */

5

[

a b
b c

]

←

[

a2 + b2 ab+ bc
ab+ bc b2 + c2

]

;

Algorithm 6: AnX for matrix A, vector X

That’s all very interesting (or not), but what can we
do with it? Remember Algorithm 3, whose line 10 took
an entire while n: loop from Example 2? Algorithm 6
is that loop, essentially.

So how would Algorithm 3 look if we replaced line 10
by Algorithm 6? Something like Algorithm 7.

Now some programming languages, like C, don’t let
you assign

[

x
y

]

←

[

ax+ by
bx+ cy

]

(4)

in a single statement.
That, plus the fact that many programming lan-

guages don’t support mathematical notation, makes the
correspondence between Example 2 and Algorithm 7
not as clear and obvious as one might like.

4



/* Example 2 more fully explained */

1 if n < 0 then

2 return −1;
3 else if n = 0 then

4 return 0;
5 else if n = 1 then

6 return 1;
7 else

8

[

a b
b c

]

←

[

0 1
1 1

]

; /* a = 0; b = c = 1 */

9

[

x
y

]

←

[

0
1

]

; /* x = 0; y = 1 */

10 while n > 0 do

11 if n is odd then

12

[

x
y

]

←

[

ax+ by
bx+ cy

]

;

13 n← ⌊n/2⌋;
/* if n = 0 then break; */

14

[

a b
b c

]

←

[

a2 + b2 ab+ bc
ab+ bc b2 + c2

]

;

15 return x;

Algorithm 7: Algorithm 3 with more details

A few notes on Algorithm 7:

• (4), i.e., line 12, takes three lines in Example 2:

t = a*x + b*y

y = b*x + c*y

x=t

• n← ⌊n/2⌋ is implemented in Example 2 as:
n = n >> 1

That is, we shift n right one bit to do the divide-
and-truncate operation.

• Line 14 is implemented in Example 2 by

t = a*b + b*c

a = a*a + b*b

c = b*b + c*c

b=t

Conclusion

If we compare Algorithm 2 vs. Algorithm 7, I would
much prefer the former. It’s straightforward and obvi-
ous, and thus much easier to understand and maintain
than Algorithm 7, and it requires no multiplications.

One might imagine a circumstance wherein Algo-
rithm 7 would be preferred, but I’m not sure what it
would be.

That said, Algorithm 7 was really interesting to learn
about, at least for me—over twenty years, a new solu-
tion!

5


